
Solving the t2'14 challenge – by Vladimir Gneushev

Used tools:

 HEX editor (your choice),
 Text editor (your choice),
 CFF Explorer http://www.ntcore.com/exsuite.php
 Binwalk http://binwalk.org/
 hashcat http://hashcat.net/hashcat/
 OllyDbg http://www.ollydbg.de/version2.html
 Python https://www.python.org/
 WireShark https://www.wireshark.org/
 sed https://en.wikipedia.org/wiki/Sed
 dig https://en.wikipedia.org/wiki/Dig_(command)

Challenge comes as a beefy 19 megabytes large zip archive. Inside we can find the main
executable called ylockpoint.exe (660kb) and a bunch of Qt framework libraries.

1. Old feelings...

Prior running any file it's always a good idea to take a look inside. Loading it in hex editor we can
notice quite suspicious stuff right at the beginning. Instead of typical "This program cannot be run
in DOS mode" here we can spot several messages like "Nonoptimal win" and "SHA1". Looks like
our first stop is here. Let's give it a try and execute this file under DOS. By DOS I mean Dosbox,
of course.

So, it appears our hunch was correct. File runs fine and shows rather familiar picture. What was
it? Aha, a 15 game! We can slide blocks using numpad and our goal is to solve the puzzle? Not
only to solve it, but to find an optimal solution (as was hinted above.) Let's google for "optimal 15
puzzle solver". Among the first few links we can find a nice app to perform this task:
http://www.ic-net.or.jp/home/takaken/e/15pz/ download it, run, arrange the blocks just as pictured,
hit "Solve" button and...

 2 10 13 7
 11 6 12 4
 1 3 5 15
 9 14 8 0

Optimal solution is 42moves.
Used time is 0sec.

 15 4 12 13 10 6 3 5 13 10
 6 3 11 1 5 13 8 14 13 11
 10 12 4 8 12 6 7 4 8 12
 11 10 6 7 3 2 1 5 9 13
 14 15

By moving the blocks using this sequence we successfully solved the puzzle and awarded with

SHA1(226268842268684486224486224886624266888444) after 42 moves

message and computing the hash (it's the keys we've pressed, btw) we got our first answer:

Answer #1 : 692787112272f82c336322dd117992a8c4a36820

trivia: funny enough, game solving algorithm is called IDA*. Just like some useful tool you may
heard of.

protip: when submitting hashes, make sure they are lower-cased or they won't be accepted

2. Ah you little...

Moving along. Not too far along, though. Let's check back the file once again. Right after "SHA1("
string we can notice "Rich" header. Normally it's used to "hide" Microsoft's compiler version used
to compile the file and often exhibits repeating 4-byte pattern just before the "Rich" word.
However, in our case the pattern is clearly irregular! Smells fishy? It surely is! So, google is our
friend again. Quick query for "microsoft rich header" immediately returns detailed description of
this obscure feature and also a script to decode it. http://www.ntcore.com/files/richsign.htm
Using CFF Explorer from ntcore and this script
http://www.ntcore.com/files/richsign/rich_sign_decr.cff we can decode the Rich header and what
we see here is... oh noes, we're being rickrolled. So the little easter egg is
SHA1(https://www.youtube.com/watch?v=dQw4w9WgXcQ) which is

Answer #easter1 df2c6f7afc1a58783e15f2ae0118ff039d8a4755

3. Serious stuff

All right, enough with the games. And it's time to look... inside the file once again. Last time now,
my promise. Skipping through bits of code, nothing of particular interest here. Code ends, some
sparse bytes and small strings like ".t2.whois-servers.org", "https:", "qrc:/main.qml" then a bunch
of encrypted/packed data almost until the end of file. Seeing this "qrc:/main.qml" reference and
no such file next to executable we can assume it's hidden somewhere and indeed, Qt allows
storing of resources inside the executable and, more importantly, compress them too! Thankfully,
it's good old deflate method, which means it's time for our next tool.

binwalk. Nifty utility that is good at searching for various stuff in files. Let's give it a try.

$ binwalk -Me ylockpoint.exe

Target File: ylockpoint.exe
MD5 Checksum: a698c7ea9bb2f02e0c7f0f3ecd1fb957
Signatures: 285

DECIMAL HEXADECIMAL DESCRIPTION
--
0 0x0 Microsoft portable executable
30448 0x76F0 Zlib compressed data, best compression, uncompressed size
>= 65536
208033 0x32CA1 Zlib compressed data, best compression, uncompressed size
>= 65536
487003 0x76E5B Zlib compressed data, best compression, uncompressed size
>= 65536
578362 0x8D33A Zlib compressed data, best compression, uncompressed size
>= 12468
581880 0x8E0F8 Zlib compressed data, best compression, uncompressed size
>= 65536

Well, that's exactly what we expected to see. Extracted chunks are still compressed, but trivial
python script finishes the job.

import zlib
inp = open("8D33A.zlib").read()
out = zlib.decompress(inp)
open("unpacked","w").write(out)

Among these files we can see a png picture, 3 wave files and qml script, which is the heart of this
challenge.

It appears we have some sort of interactive shell, where we can enter various commands. "help"
command lists some, the rest can be found in big "switch (arg[0].toLowerCase())" block. "view",
"decode" and "infect" seems important, the rest is just for fun. Oh, "mz" actually references "Mark
Zbikowski", but too late...

ok, no real answers here, time to finally run the file and try each command in action.

4. Bleedy typewriter

Let's start with "decode". According to the script, the decoder operates as follows:

 var ch = event.text --- get a keypress
 str = str + ch --- append it to a string
 switch (hashes[astralbreeze.sha1(str)]) --- calculate hash of this string
 case 1: --- hash matches, repeat
 case 2: --- final hash matches, show a secret hash
 default: --- no matching hash, reset

So, in essence we need to find a growing sequence of characters that matches provided list of
hashes. And for that we'll use another nice tool called hashcat.

First, put all hashes in to a file. Then run hashcat like

hashcat-cli64 -m100 -a3 hashes ?a

to crack the first character.

>> a0f1490a20d0211c997b44bc357e1972deab8ae3:s

Aha, it's "s"! Now, next one please!

hashcat-cli64 -m100 -a3 hashes s?a

>> c1c93f88d273660be5358cd4ee2df2c2f3f0e8e7:ss

more...

hashcat-cli64 -m100 -a3 hashes ss?a

>> 20a24593f82e573953076a0eeaf8f3cfb817a534:ssl

and so on, until we get the full string:

d42fbbb299dabe5b089d7f2dbd3303b27dc73b3b:ssl-added-and-removed-here!:)

By typing this string in "decode" prompt we'll receive encouraging message

obscure-decoder: Key sequence matches password hash
d2c4d3acc29c63a9f27c4fbf6cda4a3448590f5f

and our next answer:

Answer #2 : d2c4d3acc29c63a9f27c4fbf6cda4a3448590f5f

5. Astral brute

Ok, that was easy so far. What's next? How about "infect"? It looks like we need another
password. This time it's just a number which is passed to astralbreeze.check() method and if the
number is correct a string with " ID " part will be returned. Time for some heavy artillery! I mean,
hex editor of course. Instead of checking how this astralbreeze works, let's just cheat a little.
Open ylockpoint.exe in hex editor, search for "qrc:/main.qml" string (remember, we saw it
earlier?) and modify it to "qrc12main.qml". This will cause the said file to be loaded from the disk
instead of internally stored one. And we need this to... inject our little brute-force code right in to
the script! So, let's do it:

 case "password: ":

 // here goes our snippet

 for(var p = 0;p < 0xFFFFFFFF;p++)
 {
 var t = astralbreeze.check(p);
 if(t.indexOf(" ID ") >= 0)
 {
 log("found pin " + p);
 text = p;
 break;
 }
 }

 // the rest continues unmodified

Now, run our modified executable, invoke 'infect' job, enter any number, hit Enter and... ahem.
Well, it does seem to work, but waaaaay too slow. Since such dumb approach has failed, let's try
something different. A debugger.

Our choice of debugger is Ollydbg. Small, nice and packed with useful features.
http://www.ollydbg.de/odbg201.zip

Start the debugger, open challenge executable and hit Run, then go to "infect" again, type in
some number (like, 123) and press enter. That's interesting. Execution is stopped at the
command int 3 (if, for some reason it doesn't, check Ollydbg's Options - Exceptions settings,
Ignore INT3 breaks must be clear.) Also, EAX register seems to hold the password number we
just entered. However, if we just attempt to single-step the code from here, all we get is the
message

Attempt to run with DEWSWEEPER. Security policy violation. Sop.

Not good. So it's seems that int 3 command triggers some hidden action, which is skipped if
debugger handles int 3 by itself. Let's try it again. Put a regular breakpoints at the beginning and
end of this function (like, at 404351 and 4043C0) so we won't miss it again. Now go to Options -
Exceptions and set all "Ignore the following exception" options and also set "Report ignored
exceptions to log". Apply changes and resume execution. Go to "infect", enter some number
again, hit Enter. After hitting our breakpoint at the beginning of the function, continue execution.
Something's changed? Yes, we've skipped int 3 opcode successfully and stopped at our second
breakpoint at the end of function.

Let's check the log window (View -> Log)

00404351 Breakpoint at ylockpoint.00404351
0040437C INT3 command at ylockpoint.0040437C - passed to application
00404381 INT3 command at ylockpoint.00404381 - passed to application
00404388 Break on single-step trap or INT1 set by application - passed to application
00403AC5 Break on single-step trap or INT1 set by application - passed to application
00403FB6 Break on single-step trap or INT1 set by application - passed to application

004034D3 Break on single-step trap or INT1 set by application - passed to application
00404389 Break on single-step trap or INT1 set by application - passed to application
004043C0 Breakpoint at ylockpoint.004043C0

So it appears application handles int 3 breaks by itself and also use some sort of self-tracing. And
if we check the code at the adress where that self-tracing occurs we can see that it's filled with
some garbage. Since int 1 breaks occur right after the command execution, it must be located
just before the address from the log window.

Time to use another Ollydbg's excellent feature. If we follow one of the int 1 addresses in
Debugger’s CPU Dump window and scroll around a bit, we can recognize the beginning
(4031B0) and end (4041AF) of this "junk" area. Now select this whole area with the mouse, click
the right button and choose Breakpoint - Memory log. Check "Execution", Pause program -
Never, Log value of expression - Always. Apply. Next go to Trace - Set protocol. Select "Protocol
only the following EIP ranges", "Add range" and enter same addresses here. Go to Trace again,
select "Open run trace" (new window will appear) and resume execution of the process. Again,
"infect", some number, Enter. Continue after first breakpoint and stop at the second. If we check
the Run trace window now, we'll see it full of executed commands. Let's save it to a file (Right
click, Log to file, Add available contents).

main 00403AC2 SUB ESP,50 EAX=0000007B
main 00403AC5 INS BYTE PTR ES:[EDI],DX EAX=0000007B
main 00403FB2 MOV DWORD PTR SS:[ESP+40],EDX EAX=0000007B
main 00403FB6 CDQ EAX=0000007B
main 00403CA3 MOV DWORD PTR SS:[ESP+44],ESI EAX=0000007B
main 00403CA7 CMPS BYTE PTR DS:[ESI],BYTE PTR ES:[EDI];EAX=0000007B
main 00403875 MOV DWORD PTR SS:[ESP+48],EDI EAX=0000007B
...
main 00403DC4 FCOM QWORD PTR DS:[ESI-77] EAX=00000105
main 00403A80 MOV EBP,DWORD PTR SS:[ESP+4C] EAX=00000105
main 00403A84 TEST ESP,EDI EAX=00000105
main 00403DA5 ADD ESP,50 EAX=00000105
main 00403DA8 AND EAX,62435BD0 EAX=00000105
main 004034D0 JNE SHORT 004034D3 EAX=00000105

Looks very interesting, but a bit dirty. It appears Ollydbg logs the command that just executed and
the next one (which is a garbage) after it. Let's clean the list by throwing away every second line.

sed -n '1~2p' tracelog.txt > clean.txt

main 00403AC2 SUB ESP,50 EAX=0000007B
main 00403FB2 MOV DWORD PTR SS:[ESP+40],EDX EAX=0000007B
main 00403CA3 MOV DWORD PTR SS:[ESP+44],ESI EAX=0000007B
main 00403875 MOV DWORD PTR SS:[ESP+48],EDI EAX=0000007B
...

Much better now.

But what is it? Those magic numbers are really familiar... Aha! It's just another SHA1 calculation
over single block. First 4 bytes of it is our password, next four is 0xB16B00B5 and the rest is
regular SHA1 padding/size bits. Correct hash value must be:

main 004034E1 CMP ESI,E51B27AD EAX=00000000
main 004037C3 SETNE AH EAX=00000000
main 00403725 ADD AL,AH EAX=00000100
main 00403591 CMP EBX,14A0AA4B EAX=00000101
...

E51B27AD14A0AA4B083EB2FAD55B065502C6154E

Now we can easily bruteforce the input value.

import struct
import hashlib

data=bytearray(8)
data[4:8]=struct.pack(">I", 0xB16B00B5)

for i in xrange(0, 0xFFFFFFFF):
 data[0:4]=struct.pack(">I", i)
 if hashlib.sha1(data).hexdigest() ==
"e51b27ad14a0aa4b083eb2fad55b065502c6154e":
 print "found pin ", i
 break

It's turns out to be 233811181 (or 0xDEFACED) which awards us with another message:

infect-astral-breeze: Access via Belgacom, ID e51b27ad14a0aa4b083eb2fad55b065502c6154e

and that's our goal.

Answer #3 : e51b27ad14a0aa4b083eb2fad55b065502c6154e

behind the scenes: Also try password 42424242 for more NSA jokes.

6. Watch me carefully

All right. Final task. According to the qml script, "view" command accepts extra parameter. When
omitted, "dynamic" is used instead. It's passed to quantumsource.lookupInfo() method which
then invokes callback function with two additional arguments: url and msg. Url later used to load
and play a video file. Msg displayed as "location" and, if contains "SHA1" substring is our goal.
Since this part of the challenge seems to be network-related, let's run our trusty Wireshark and
see what's going on here.

Aha, it looks like "view" command sends TXT DNS query to dynamic.t2.whois-servers.org or
another sub-domain if supplied. And returned answer contains url of a video file.

Let's replicate the query using dig tool:

$ dig TXT dynamic.t2.whois-servers.org

;; QUESTION SECTION:
;dynamic.t2.whois-servers.org. IN TXT

;; ANSWER SECTION:
dynamic.t2.whois-servers.org. 5 IN CNAME ru.t2.whois-servers.org.
ru.t2.whois-servers.org. 5 IN TXT "Russian Federation"
ru.t2.whois-servers.org. 5 IN TXT
 "https://dl.dropboxusercontent.com/s/2ow9on75z3h5r46/ylockpoint-6891.mp4?dl=1"

So far so good, but nowhere close to the goal. In the video we can see some sort of a network
monitoring log, with a lot of DNS TXT request from all around the world like we just did
ourselves.

Oh, we also have a hint! Two in fact. "Pay close attention to first 4 seconds and last 2 seconds of
the video." In first few seconds of the video we can see three irregular geometric shapes, looks
like someone spilled black ink. Let's find out what it is. Screengrab the image, crop individual
shapes and upload them to google image search. That was easy. That's not the ink, but rather
world's map cut-outs! Rightmost one is Mexico, middle is Afghanistan and leftmost one is
Bahamas. Let's try it again. Mexico zone is mx, Afghanistan is af, and Bahamas is bs, according
to https://en.wikipedia.org/wiki/ISO_3166-1.

$ dig TXT mx.t2.whois-servers.org

mx.t2.whois-servers.org. 5 IN TXT "Mexico"
mx.t2.whois-servers.org. 5 IN TXT
 "https://dl.dropboxusercontent.com/s/2ow9on75z3h5r46/ylockpoint-6891.mp4?dl=1"

$ dig TXT af.t2.whois-servers.org

af.t2.whois-servers.org. 5 IN TXT "Afghanistan. Close, but no cigar. You are
not there!"
af.t2.whois-servers.org. 5 IN TXT "youtube:XlWQsVwsTyY"
af.t2.whois-servers.org. 5 IN TXT
 "https://dl.dropboxusercontent.com/s/8bdo5s2y45azv6n/66f0a1a1c7cdb6a7b66cbf7d10772
ae8c1238809.mp4?dl=1"

$ dig TXT bs.t2.whois-servers.org

bs.t2.whois-servers.org. 5 IN TXT "Bahamas. Close, but no cigar. You are not
there!"
bs.t2.whois-servers.org. 5 IN TXT "youtube:XlWQsVwsTyY"
bs.t2.whois-servers.org. 5 IN TXT
 "https://dl.dropboxusercontent.com/s/8bdo5s2y45azv6n/66f0a1a1c7cdb6a7b66cbf7d10772
ae8c1238809.mp4?dl=1"

That's better, but no cigar. Time for another clue!

Last few seconds of the video show close-up of several DNS TXT requests from google's public
DNS server 8.8.8.8. Nothing particularly interesting here, except... Let's rewind the video back to
0:13. In the long list of request we can see the same requests from 8.8.8.8 ip. But what's more
important, if we check the rightmost column, we can also notice that despite requests arriving
from the same IP and to the same dynamic.t2. server, the resolved geographic subdomain is
different every time. So this means it's possible to somehow specify the desired zone in request
itself. Now go forward to the last few sections of the video again. Here we can see some
"CSUBNET - Client subnet" option. Let's try to send such request. (Of course, we can try to find
some Bahama's vpn/proxy, but...)

Bummer. It appears by default dig doesn't provide such functionality. Time to ask google for help
again. Query for "dig client subnet" easily finds the solution. https://www.gsic.uva.es/~jnisigl/dig-
edns-client-subnet.html

Let's follow the instructions, recompile the dig with edns patch, and run it again with some IP from
Afghanistan. Another query to google for "afghanistan ip range" brings us to this table
http://www.nirsoft.net/countryip/af.html with suggested IP range 58.147.128.0 through
58.147.159.255 . Let's try it now.

$./dig TXT dynamic.t2.whois-servers.org +client=58.147.128.123 @8.8.8.8

;dynamic.t2.whois-servers.org. IN TXT

;; ANSWER SECTION:
dynamic.t2.whois-servers.org. 299 IN CNAME somalget-ftw-in-2014.t2.whois-servers.org.
somalget-ftw-in-2014.t2.whois-servers.org. 299 IN TXT "^C^CSHA1(\"Connection hijacked by
E.S.\") 9afe35a90de076fd497787811d469264b85bd204"
somalget-ftw-in-2014.t2.whois-servers.org. 299 IN TXT "youtube:o66FUc61MvU"
somalget-ftw-in-2014.t2.whois-servers.org. 299 IN TXT
"https://dl.dropboxusercontent.com/s/tgyy82dv1uujajq/f184a821ad6eb33fdb4446e9b7d5a712f55f
1d40.mp4?dl=1"

A-and we're done here.

Answer #4: 9afe35a90de076fd497787811d469264b85bd204

Tha't all folks!

