
Solving the T2 ’14 challenge – by Ludvig Strigeus

The challenge is in the form of a 19MB file called ylockpoint-

final.zip. It’s contains a Win32 application written with the QT1

toolkit, that displays a full screen interface with a command prompt.

The task of the challenge is to extract a set of hexadecimal SHA

hashes that the challenge will present in one way or another.

This year would be more focused on reverse engineering, so I

loaded up the binary in IDA2 and did some basic static analysis. Most

of the logic appeared to be handled by the QT/QML3 code that gets

loaded into the main window (through a resource named main.qml). At the same time, I noticed that the EXE-

file had a nonstandard DOS header appearing to belong to the challenge.

The static analysis had revealed a call early on to QT’s showFullscreen which I patched into showNormal using

a hex editor. This runs the program as a normal windowed application instead, to facilitate debugging.

At the end of the binary is a large data blob containing embedded application resources, stored using zlib4

compression in QT’s own resource format5. To unpack them, I wrote a Python6 tool that scans for zlib headers

and tries to decompress. I found five files: Three audio files, one qml file and one image. The audio files produce

various keypress sounds, and the image is the background image of the application’s interface. Through ocular

inspection, I found no secret information hidden inside the media files.
 # Decoder code. 0x76e8 is the offset of the resource section start in the EXE.

 data, ctr = file('d:\\t2\\ylockpoint.exe', 'rb').read()[0x76e8:], 0

 for i in xrange(len(data) - 10):

 # Zlib header magic numbers

 if data[i] == '\x78' and data[i+1] in ('\xda', '\x9c', '\x01'):

 try:

 s = zlib.decompressobj().decompress(data[i:])

 file('d:\\t2\\out\\%d.dat' % ctr, 'wb').write(s)

 ctr += 1

 except zlib.error:

 pass

The program, which has a PI inspired version number 3.14.15.92, accepts the following commands:

Available commands:

(h) help Show help

(d) decode Acticate obscure key decoder

(v) view Connect to quntaview live stream

(i) infect Install Astral Breeze monitoring

(q) quit Quit program

I found some other ones too:

y-lockpoint$ make blabla

make: don't know how to make blabla. Stop.

y-lockpoint$ m

mz: Mark Zbikowski is still alive!

1 http://qt-project.org/
2 https://www.hex-rays.com/products/ida/
3 http://en.wikipedia.org/wiki/QML
4 http://en.wikipedia.org/wiki/Zlib
5 http://qt-project.org/doc/qt-5/resources.html
6 https://www.python.org/

Puzzle of old times
When starting ylockpoint.exe in DOSbox7, a sliding puzzle game

appears. It’s controlled using the arrow keys. This game is written in

16-bit DOS assembly and embedded in the DOS header that

normally just prints that the application requires Windows .

The static disassembly shows various strings (one including the

word SHA) that can be printed as a result of running the game, so

probably if you solve the puzzle with the least number of moves the

secret string will get printed.

I found a puzzle solver8 on the Internet that I ran to produce the

answer that consisted of 42 steps. When inputting this in the DOS

based game it says:

SHA1(226268842268684486224486224886624266888444)

after 42 moves.

Hashing that string with Python to get the answer:

>> s = '226268842268684486224486224886624266888444'

>> sha.new(s).hexdigest()

'692787112272f82c336322dd117992a8c4a36820'

Additionally, I found an encrypted embedded string, encrypted using XOR encryption9 with the key

0xDEADBEEF. It was obvious that the key was 0xDEADBEEF because of embedded NUL characters that got

encrypted into the key itself. When decrypting the blob, with NUL characters replaced with ?, I get:

DanS????????????SHA1(https://www.youtube.com/watch?v=dQw4w9WgXcQ)???

Hashing and entering the URL on the web page just says that I found an Easter egg:

df2c6f7afc1a58783e15f2ae0118ff039d8a4755

The video is a very motivating video named: Rick Astley – Never Gonna Give You Up.

Hashed keypresses
When using this command of ylockpoint:

(d) decode Acticate obscure key decoder

A loop gets started that accepts key presses. Analyzing main.qml that I decompressed earlier shows that the

entered keys are accumulated into a password string one by one. For every typed character, the partial string is

hashed and compared a list of valid hashes. If correct so far, a special sound is played. You could solve this by

testing one character at a time by hand and listening to the sounds that get played, but I made a Python solver:

def nextchar(s = ''):

 for c in "qwertyuiopasdfghjklzxcvbnm-!:()":

 if sha.new(s + c).hexdigest() in HASHLIST:

 return nextchar(s + c)

 print 'Answer: ' + s

nextchar()

Answer: ssl-added-and-removed-here!:)

SHA1("ssl-added-and-removed-here!:)") = d42fbbb299dabe5b089d7f2dbd3303b27dc73b3b

7 http://www.dosbox.com/
8 http://www.brian-borowski.com/software/puzzle/
9 http://en.wikipedia.org/wiki/XOR_cipher

https://www.youtube.com/watch?v=dQw4w9WgXcQ)

One step at a time
When using this command of ylockpoint:

(i) infect Install Astral Breeze monitoring

A password prompt is shown where you can enter a numeric pin code. This is then passed to a C++ function for

verification through QT’s JavaScript bindings.

The C++ code has installed a vectored exception handler10 that is used to single-step the CPU instructions of the

PIN code verifier by using the Trap Flag11, and then a string is decrypted and returned to main.qml. After every

instruction the instruction pointer is modified to a new location by looking up a value to add from an array. This

means that the instructions of the verifier function are not stored linearly in the executable but scattered inside a

data blob in the executable. After every instruction: IP += TABLE_OF_OFFSETS[current_offset++]

To be able to analyze it, I wrote an IDAPython12 script that computes the addresses of all the run instructions and

linearizes them into a single function in IDA. The resulting function takes the PIN code integer as input, hashes it

using SHA1, converts the hash to a hex string, verifies that the hash is correct, and then produces the solution

string if the hash is correct.

I copied all the instructions into an inline-assembly function in a new C++ program, and wrote a multithreaded

bruteforcing loop that tests all 2^32 = 4 billion combinations against the valid hash. After a short while, my

program had found the answer.

bool __declspec(naked) _cdecl doit(int input) {
 _asm {
 // All the instructions from the linearized function but changed
 // to return true for a valid hash.
 }
}

DWORD WINAPI Start(PVOID arg) {
 int i = (int)arg << 29, count = 1 << 29;
 do {
 if (doit(i)) { printf("The PIN is: %u\n", i); break; }
 } while (i++, --count);
 return 0;
}

int main(int argc, char* argv[]) {
 DWORD id;
 for (int i = 0; i < 8; i++)
 CreateThread(NULL, 0, &Start, (void*)i, 0, &id);
 while (true)
 Sleep(10);
 return 0;
}

The PIN code is 233811181. Entering this in ylockpoint prints:

Access via Belgacom, ID e51b27ad14a0aa4b083eb2fad55b065502c6154e

The single step function contains another magic PIN code, 42424242. This prints:

PIN valid for BLACKHEART operations only. Installation aborted.

10 http://msdn.microsoft.com/en-us/library/windows/desktop/ms681420(v=vs.85).aspx
11 http://en.wikipedia.org/wiki/Trap_flag
12 https://code.google.com/p/idapython/

The secret location
The final challenge uses

(v) view Connect to quntaview live stream

The C++ code / QT binding does a TXT13 DNS lookup against the hostname dynamic.t2.whois-servers.org,

and extracts a URL and a text string from the reply. The URL points at a movie file that gets played, while the

string is a message that is displayed on the screen.

[ludde@freebsd ~]$ host -t txt dynamic.t2.whois-servers.org

dynamic.t2.whois-servers.org is an alias for se.t2.whois-servers.org.

se.t2.whois-servers.org descriptive text "Sweden"

se.t2.whois-servers.org descriptive text "https://dl.dropboxusercontent.com/s/2ow9on75z3h5r46/ylockpoint-

6891.mp4?dl=1"

This is basically a GeoIP14 service that maps the user’s IP address into a country and a video file. The video itself

is well made and gives a hacker feeling with a bunch of packet capture screenshots and countries with blinking

lines and funny beeps. Quite cool.

I perform a DNS query on all the 26x26 two-letter country codes to see if any countries get special treatment and

I found Afghanistan (af) and Bahamas (bs):
af.t2.whois-servers.org descriptive text "youtube:XlWQsVwsTyY"

af.t2.whois-servers.org descriptive text

https://dl.dropboxusercontent.com/s/8bdo5s2y45azv6n/66f0a1a1c7cdb6a7b66cbf7d10772ae8c1238809.mp4?dl=1

af.t2.whois-servers.org descriptive text "Afghanistan. Close, but no cigar. You are not there!"

The video is made by Thomas Dolby15. Searching for him doesn’t reveal

anything interesting except for a twitter mentioning NSA. At this point I’m

pretty much stuck and I guess various other strings to lookup instead of the

country codes, but I find nothing.

Eventually, after a hint was published, I realize that the solution really is to

be found in the original video somewhere. At the beginning of the video it

shows two outlines of Mexico and Afghanistan. At the very end, the video

displays a DNS packet using the Client Subnet16 extension. I craft a DNS

packet using this extension pretending that the query originates from an IP inside of Afghanistan. That did the

trick: Now the CNAME points at somalget-ftw-in-2014.t2.whois-servers.org with this string:

SHA1("Connection hijacked by E.S.") 9afe35a90de076fd497787811d469264b85bd204

Or use this command to see it live inside of the ylockpoint console:

>> v somalget-ftw-in-2014

13 http://en.wikipedia.org/wiki/TXT_Record
14 https://www.maxmind.com/en/geoip2-services-and-databases
15 http://en.wikipedia.org/wiki/Thomas_Dolby
16 http://www.ietf.org/archive/id/draft-vandergaast-edns-client-subnet-02.txt

https://dl.dropboxusercontent.com/s/8bdo5s2y45azv6n/66f0a1a1c7cdb6a7b66cbf7d10772ae8c1238809.mp4?dl=1

Appendix A – IDAPython Code to linearize the scattered PIN verifier
import array, idc
data = file('d:\\t2\\ylockpoint.exe', 'rb').read()
a = array.array('i', data[0x5df8:])
OUT = 0x500000
PC = 0x00403AC2
CNT = 0
idc.MakeUnknown(OUT, 65536, 0)
for i in xrange(4, 2000):
 idc.MakeUnknown(PC, 16, 0)
 len = idc.MakeCode(PC)
 if len <= 0:
 break
 for j in xrange(len):
 idc.PatchByte(OUT, Byte(PC + j))
 OUT += 1
 PC += a[i] + len
 CNT += 1
idc.MakeCode(0x500000)

Appendix B – Code to craft a Client Subnet DNS packet
import socket

ip = (61,5,192,0) # belongs to Afghanistan

a = "00 00 00 00 00 01 00 00 00 00 00 01".replace(' ', '').decode('hex')
b = "\x07dynamic\x02t2\x0dwhois-servers\x03org\x00"
c = "\x00\x10\x00\x01"
d = "\x00\x00\x29\x0b\xb8\x00\x00\x80\x00\x00\x0c"
e = "\x00\x08\x00\x08\x00\x01\x18\x00"+"".join(chr(v) for v in ip)

m=a+b+c+d+e
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0)
s.sendto(m, ('54.72.192.63', 53))

The reply can be seen in a packet capture such as Ethereal.

Appendix C – Code to decode the easter egg in the DOS header

import array, sha
data = file('d:\\t2\\ylockpoint.exe', 'rb').read()
r = ''
for i in xrange(76):
 c = ord(data[0x250 + i]) ^ ord("\xEF\xBE\xAD\xDE"[i%4])
 r += chr(c) if c >= 32 else '?'
print r
print sha.new('https://www.youtube.com/watch?v=dQw4w9WgXcQ').hexdigest()

