
A war-story of

Solving the T2 '11 challenge

as told by Timo Teräs

Level 1 – The audiogram
The competition started off with a mp3
file. After the first listening, it was
obvious that the file was reversed
English speech. This called to fire up
audacity1 the sound editor of
preference.

After reversing the audio clip, the voice
needed just a minor reset of sampling
rate (to 32kHz) to get some
understandable English.

The military alphabet used to spell
letters is fairly well known, but the list
is also available in Wikipedia2. The only
trouble was recognizing the part 'b8a5'
as the 'alfa' was slightly obscure.

So the URL was:
http://t2.fi/ext/challenge?level=09d642f60cbed162b8a589bde2d18674

But as my habits require, I was forced to also take a look at the file using file3 and hd4, my
default utilities to recognize file and to check the binary contents.

As ID3 tag was present, I decided to take a look at it also with id3v25:

$ id3v2 -l t211-challenge-lreevel1.mp3
id3v2 tag info for t211-challenge-level1.mp3:
TIT2 (Title/songname/content description): Revolution 9
TALB (Album/Movie/Show title): The Beatles
TRCK (Track number/Position in set): 5
TCON (Content type): Rock & Roll (78)
TPE2 (Band/orchestra/accompaniment): Beatles
TDRC (): frame

So... we seem to have a Beatles theme this year ;)

1 apt-get install audacity
2 http://en.wikipedia.org/wiki/NATO_phonetic_alphabet
3 apt-get install file
4 apt-get install bsdmainutils
5 apt-get install id3v2

http://t2.fi/ext/challenge?level=09d642f60cbed162b8a589bde2d18674

Level 2 – The pictogram
The file given for level 2 was a .tif image. And
yes, file says it was indeed a TIFF image.
So the first thing is to see it an image editor –
gimp6 in my case. However, something was
definitely fishy as gimp complained with
various errors like:

Line length mismatch at line 0 of strip
0 (got 529, expected 23)
Line length mismatch at line 2 of strip
0 (got 24, expected 23)

However, the image opened up, but looked just
a random collection of black dots. My first
guess is that there's something funky going on
with the image width (TIFF RLE encoding is
not allowed to overlap line boundaries).

Next I decided to take a look with hd for the
hex dump. And since it look liked meta-data
being present, I next chose to dump that using
exiv27 (output modified for brevity):

$ exiv2 pr -Pnct 2vxv93-t211-challenge-
level2.tif
ImageWidth 1 23
ImageLength 1 69
BitsPerSample 1 1
ImageDescription 38 A Hard Day's Night
(1964) Album Cover
Make 7 Google
Model 6 R7cdl
StripOffsets 1 530
RowsPerStrip 1 122
StripByteCounts 1 156
Software 10 IrfanView
Artist 8 Beatles
HostComputer 6 llTU9
UserComment 18 Reggae Set
XPTitle 76 A Hard Day's Night
(1964) Album Cover

Now the Make, Model and HostComputer
fields look unusual in addition to the
ImageDescription hinting again at the Beatles.
Now, googling for R7cdl and llTU9 did not
result in much of interest. I quickly
remembered the Google URL shortening
service: http://goo.gl/. And yes, those are valid
goo.gl URLs.

6 apt-get install gimp
7 apt-get install exiv2

First, http://goo.gl/R7cdl lead to a hint about
morse code8. The other URL
http://goo.gl/llTU9 lead to factorization of 23
by 69 (the height and width of the image)9.
This indeed hinted that the image dimensions
were actually something else.

The obvious step is to patch the binary file
using hexedit10. But where in the file are the
dimensions? After a quick man search, I found
dcparse11 which gave the information:

tag=0x100 256, type=3, count=1,
offset=000012, data= 0017
tag=0x101 257, type=3, count=1,
offset=00001e, data= 0045

The bytes are at offsets 0x12 and 0x1e. There
are were only few combinations to test (ways
how the image size can be factorized) and
trial-and-error revealed that the height 3 and
width 529 looked interesting... morse code.

I decided to google for a morse decoder, and
found one to decode dots and dashes to plain
text12. The image was fairly quickly converted
by hand to be:

-.... ..--- --...-- ..---
----- ----. -.-.- -----
-.. .---- ..-. ----- .---- ---..
--... ---.. --------- -...
..... -... ---.. .- ..-. -.. ..-.

Which was translated by the web service for
me as:

62753209c40d1f015878051b55b8afdf

The pass code for next level!

8 http://www.wolframalpha.com/input/?
i=morse+easter+egg

9 http://www.wolframalpha.com/input/?
i=factorize+23*69

10 apt-get install hexedit
11 apt-get install dcraw
12 http://webnet77.com/cgi-bin/helpers/morse.pl

http://goo.gl/llTU9
http://goo.gl/R7cdl
http://goo.gl/

Level 3 – The cryptogram
And now received a network capture. This
calls for a wireshark13 analysis. It was
obvious that there was only a single TCP-
session, that looked simple dialogue. I just
saved this as C-format arrays for further
analysis.

And cool, we have a Beatles hint again.

After the dialogue goes to 'mode 2' it seems
that the replies are quite close to the
expected plain text, but getting added an
increasing offset. So I drew a small table
with text editor on the differences:

 O O +0
 K L +1
 P Q +1
 A C +2
 U X +3
 L Q +5
 R Z +8
 I V +13
 N c +21
 G i +34
 O 0x86 +55

Now this is a sequence all self-respecting
hackers will recognize right away: the
Fibonacci sequence.

So the obvious first try is to generate the
Fibonacci sequence from 55 onwards, and try
to decrease those values from the final
message. However, that turned out to be
garbage.

It was also notable that the reply to the 'type'
command was exactly the length of t2.fi URLs
with the hash, so expected plain text would
likely start with http://t2.fi/ext/...

So assuming that, and that the generator for
the cipher stream is Fibonacci style (sum of
two previous elements in sequence), we could
guess the starting sequence elements. The first
item would be 0x80-'h'=24 and the second one
would be 0x82-'t'=14.

And this revealed only the beginning of the

13 apt-get install wireshark

URL: 'http' and after that we got unexpected
characters; however, it was become soon
evident that the further characters were coded
in similar manner. That is, starting decoding
from the fourth character, and using known
plain text to guess beginning offsets revealed
another group of expected characters.

After quite a bit of trial-and-errors it became
clear that the offset is modified whenever it
goes above 'A'. So the C-code for deciphering
was ready:

 for (i = 0; i < len; i++) {
 if (x1 >= 'A')
 x1 -= 'A';
 printf("%c", msg[i]-x1);
 x3 = x2;
 x2 = x1;
 x1 = x2 + x3;
 }
 printf("\n");

And now to just to decrypt the message using
this, we get:

http://t2.fi/ext/challenge?
level=1c9e0af6cc2fc9895e3313750b2a5e85

http://t2.fi/ext/challenge?level=1c9e0af6cc2fc9895e3313750b2a5e85
http://t2.fi/ext/challenge?level=1c9e0af6cc2fc9895e3313750b2a5e85
http://t2.fi/ext/

Level 4 – The logic'gram
The final level was a html page with java
applet that presented a monstrous looking
beast to be solved. It looks like a Sudoku
puzzle... but it's just bigger!

Looking at the picture more and more it indeed
looked like a 16x16 sudoku with some given
digits within 0-9 and a-f. And yes, google says
that there's a variant of hex sudoku that is
exactly this.

So I just searched for the first hex sudoku
solver and found one by Thomas Grønneløv14.
I came with a quick and dirty Linux shell
magic to convert the html page to a preset
situation this program would accept:

$ cat t211-challenge-level4.html | grep
name= | sed -e 's/<[^>]*>//g' -e 's/[
\t]*//g' -e 's/0/16/g' -e 's/^$/0/g' -e
's/a/10/g' -e 's/b/11/g' -e 's/c/12/g'
-e 's/d/13/g' -e 's/e/14/g' -e
's/f/15/g' | tr "\n" ,

The output was almost perfect, just removing
the first zero and fixing the end, did the trick.

Now to just have the solver crunch the
problem... and wait... it was Sauna time :)

14 http://www.greenleaf.dk/projects/sudoku

After some rounds of Sauna, the program did
report a correct solution for the 16x16 Sudoku.

Now I was not feeling like coding after the
Sauna, so I just typed the correct solution to
the puzzle..... and this resulted in the final
piece of the competition: to recognize missing
words.

The immediate guess was that it's a Beatles (so
many references to these guys!) lyric (the
words patterns had repetitions as-in a poem or
lyrics). But which one – they have hundreds of
songs. And alas, at this point someone had
solved the level 4... so it was back to Sauna.

Later... the pattern X.X.X.X. gave out the song
in question quite fast. The words of “Back in
the U.S.S.R.” fit the given template perfectly.
And it was easy to recognize the missing
words. After filling in the missing words, the
Java applet gave back the final URL of:

http://t2.fi/ext/challenge?
level=e450f76afe9b3844228bdf4846d6f301

http://t2.fi/ext/challenge?level=e450f76afe9b3844228bdf4846d6f301
http://t2.fi/ext/challenge?level=e450f76afe9b3844228bdf4846d6f301

At the end of the rainbow
If one is to solve a puzzle, one should do it
well.

So what were the mysterious multi-character
strings in the song lyrics? As they substituted
geographic locations, the first thought is that
they are coordinates intended as a hint. And
yes, indeed they are Military Grid Reference
System coordinates15. Out of curiosity I used
an online service16 to translate these to more
known GPS coordinates, and then Google
Maps to see where they point:

17RNJ8721889607852788532447
25°47'26.4"N 080°07'48.2"W
N.OceanRoad/Lincoln Road, Miami Beach

36UUU6416964766060099795269
48°22'46.0"N 031°09'56.1"E
Kirovohrads'ka oblast, Ukraine

37UDB1324500360079764979033
55°45'20.8"N 037°37'03.5"E
Proyezd Voskresenskiye Vorota
1/5, gorod Moskva, Russia

17SLR2015601780459479826465
32°09'26.8"N 082°54'25.6"W
New Bethel Church Rd, Helena,
GA 31037, Georgia

Nothing too exciting here.

However, as a final check, I wanted to figure
out if the pass-codes (MD5 signatures) for
each level would have some rational meaning
or not. Thus I ran them using an online MD5-
rainbow dictionary17. It did recognize the last
two of the MD5s to be “Help!” and
“Revolver”. Where have I seen these before?

Yes, these are the Beatles album names which
I saw while hunting the song lyrics for the last
level. So quickly to get a list of all the Beatles
album names, and check which two would
match the other levels.

15 http://en.wikipedia.org/wiki/Military_grid_reference_sy
stem

16 http://geographiclib.sourceforge.net/cgi-bin/GeoConvert
17 http://www.md5rainbow.com

The matches were “Please Please Me” and “A
Hard Day's Night”.

So the level codes were:

Level 1
09d642f60cbed162b8a589bde2d18674
Please Please Me

Level 2
62753209c40d1f015878051b55b8afdf
A Hard Day's Night

Level 3
1c9e0af6cc2fc9895e3313750b2a5e85
Help!

Level 4
e450f76afe9b3844228bdf4846d6f301
Revolver

	Level 1 – The audiogram
	Level 2 – The pictogram
	Level 3 – The cryptogram
	Level 4 – The logic'gram
	At the end of the rainbow

