
Solving the T2 ’13 challenge – by Ludvig Strigeus

The challenge is in the form of a 256MB file called apt.img. It’s a disk image of a USB drive. Using the file

command verifies that this is the case:

$ file apt.img

apt.img: x86 boot sector; partition 1: ID=0xc, active, starthead 32, startsector 2048, 497952

sectors, code offset 0x7b

I mount the disk image on my FreeBSD system:
$ mdconfig -a -t vnode -f apt.img -u 0

$ mount_msdosfs /dev/md0s1 mount

The USB drive contains this folder structure:

The task is to find a bunch of other files hidden or referenced inside of those files, and we need to submit the

MD5 hash for each found file to the challenge web site.

The deleted torrent file

I suspected that the USB partition might have traces of

deleted files. Deleting files doesn’t normally overwrite

the file with zeros, it merely writes in the directory

entry that the file has been deleted. I used a tool called

Active UNDELETE1.

Here we see a data.torrent file, and I tell the undeleter to recover this file. I tried to open it with a program I

made in the past, named µTorrent2, but unfortunately there were no active seeds and peers, so the file could not

be downloaded.

A peek inside of the .torrent file reveals a hidden URL. I

successfully download this file, but it’s not a valid JPEG file.

The file extension of the URL hints that it’s encrypted:

https://dl.dropboxusercontent.com/s/e0w96mphez7v7po/9370b0b2b3abe901f6287b26937e6b88.jpg.enc

Early in the file are some repeating sequences of

8 bytes. This suggests it has been encrypted

with an encryption tool with an 8 byte

blocksize. This early in the file is likely to be the JPEG EXIF3 header. I know from experience that this header

often contains runs of zeros, so my guess is that this is what 00 00 00 00 00 00 00 00 looks like when

encrypted.

On the USB disk is a file named encryptor.c. It has been obfuscated

into a funny lock and key. I restructure the code to make it readable.

I discover that the encryption key is generated from time(NULL),

which returns the number of seconds since 1970 as a standard UNIX

timestamp. This means that we can guess when the tool was run to

predict the key!

I restructure and clean up the loop of the encryptor to convert it into a

decryptor. This code runs for each 8 byte block and decrypts the 8

bytes in k[0], k[1]. A,B,C,D are derived from the timestamp.

 i = 31;

 j = some_constant * 32;

 do {

 k[1] -= (k[0] << 4) + C ^ k[0] + j ^ (k[0]>>5) + D;

 k[0] -= (k[1] << 4) + A ^ k[1] + j ^ (k[1]>>5) + B;

 j -= some_constant;

 } while (i--);

I attempt a known plaintext attack4. My hypothesis is that E0 9D 3D 1D 81 F4 A5 39 decrypts to all zeros. It’s just

a matter of testing keys until I find a match. I quickly loop through all

seconds between 2011 and 2013, and find a match at 1351247820.

time.ctime(1351247820) in Python5 reveals that this is ”Fri Oct 26 12:37:00

2012” which is pretty close to the modification date of encryptor.c, so I know

I’m right. I decrypt the file with the key and get an image.

The image’s MD5 hash is: 476d9247463dd91488fbd0d123e04ac1

1 http://www.active-undelete.com/
2 http://www.utorrent.com/
3 http://en.wikipedia.org/wiki/Exchangeable_image_file_format
4 http://en.wikipedia.org/wiki/Known-plaintext_attack
5 http://www.python.org/

http://www.active-undelete.com/
http://www.utorrent.com/
http://en.wikipedia.org/wiki/Exchangeable_image_file_format
http://en.wikipedia.org/wiki/Known-plaintext_attack
http://www.python.org/

The encrypted zip file

On the USB disk is a file called news.txt. I

recognize it as a uuencoded6 message body.

$ uudecode news.txt

$ cat msg.txt

got mem dump of T's box @ Zetor. i can has pw hash dump? win pw == zip pw??? volatility ftw!

https://dl.dropboxusercontent.com/u/28851620/T/a444cf60f13382cb1c233363781265349488563a.zip

https://dl.dropboxusercontent.com/u/28851620/T/679f9a9737ecb42cc56a166f3e4830e225448df1.zip

-- APT

The first file contains a 2GB memory dump. The second file contains e79d2f8834910399c34192a2f1f8fc0e.jpg,

but it’s been encrypted with a zip file password.

I search on Google for a tool to dump passwords from RAM memory dumps. I find a tool called volatility7, nice

hint there. I use a guide8 that decribes how to use volatilty.

$ volatility-2.1.standalone.exe imageinfo -f T.raw

Volatile Systems Volatility Framework 2.1

Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)

$ volatility-2.1.standalone.exe hivelist -f T.raw --profile=WinXPSP2x86

Volatile Systems Volatility Framework 2.1

Virtual Physical Name

---------- ---------- ----

0xe14b4008 0x0f962008 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM

0xe1035b60 0x0a424b60 \Device\HarddiskVolume1\WINDOWS\system32\config\system

...

$ volatility-2.1.standalone.exe hashdump -f T.raw --profile=WinXPSP2x86 -y 0xe1035b60 -s 0xe14b4008

Volatile Systems Volatility Framework 2.1

T:500:81de36ec83691f0b22d3b69d51786748:bdf8f7ed94d3358e2be2b16ae602cf20:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

HelpAssistant:1000:469c976ed23a70e0799d1f5c3b02f777:1b67841672576a7a9f46e1c55f987b99:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:1157c1e88d4918b8bd230f633937c871:::

Here above we see the LM and NTLM hashes for the user T. I use a web based tool named ophcrack9 based on

rainbow tables10 that cracks LM and NTLM hashes. It reveals that the password is t2infosec. Now I can unzip the

jpeg file with this password, just like msg.txt said.

$ md5sum.exe e79d2f8834910399c34192a2f1f8fc0e.jpg

e79d2f8834910399c34192a2f1f8fc0e *e79d2f8834910399c34192a2f1f8fc0e.jpg

How silly, the name of the file is the same as its hash. There was no need to do the

password cracking. Was that a glitch in the challenge?

The image’s MD5 hash is: e79d2f8834910399c34192a2f1f8fc0e

6 http://en.wikipedia.org/wiki/Uuencoding
7 https://www.volatilesystems.com/default/volatility
8 http://cyberarms.wordpress.com/2011/11/04/memory-forensics-how-to-pull-passwords-from-a-memory-
dump/
9 http://www.objectif-securite.ch/en/ophcrack.php
10 http://en.wikipedia.org/wiki/Rainbow_table

https://dl.dropboxusercontent.com/u/28851620/T/a444cf60f13382cb1c233363781265349488563a.zip
https://dl.dropboxusercontent.com/u/28851620/T/679f9a9737ecb42cc56a166f3e4830e225448df1.zip
http://en.wikipedia.org/wiki/Uuencoding
https://www.volatilesystems.com/default/volatility
http://cyberarms.wordpress.com/2011/11/04/memory-forensics-how-to-pull-passwords-from-a-memory-dump/
http://cyberarms.wordpress.com/2011/11/04/memory-forensics-how-to-pull-passwords-from-a-memory-dump/
http://www.objectif-securite.ch/en/ophcrack.php
http://en.wikipedia.org/wiki/Rainbow_table

The damaged QR code

On the USB disk is a photo named photo2.jpg. The upper corner

is missing. I see that it contains 29x29 pixels, so I rotate, crop

and resize the photo down to this size to get a smaller bitmap

with nothing but the QR code pixels. Unfortunately the top

corner is missing. I’m unable to find a tool capable of decoding

this broken code. My phone can’t decode it either.

Wikipedia11 describes QR codes quite well, and they contain

error correcting codes, meaning that I don’t need the full code

in order to recover the contents. I fill in the pixels of the blank part with the missing format,

timing zone and positioning elements12. Those elements are redundant so I copied them from

the other place in the image. The decoder probably couldn’t find the code when those fields

were missing.

Now I have some more luck! I manage to partially decode the QR code with a web based tool13 into the string:
ht~j://tiny•��.com/yNS�_W�utionzo|s>omgz

It’s obvious that the string should start with http. I can use this knowledge to manually repair a few pixels and

then the error correcting codes might be able to fix the rest. To be able to edit the characters in the image I need

to know which masking mode is used, and I need to know what character encoding that is used.

The masking mode is because the QR-code encoder has XOR:ed the pixels with one of eight different masks14, in

order to make the pattern easier to parse. The masking mode is encoded in the 15 blue format bits, and those

bits say that it’s mask number 6 that has been used. I wrote a small tool in Python to XOR two images and

produce an unmasked version.

The layout15 of the 29x29 pixels QR code shows that the data bytes D1, D2, .. start in the lower right corner and

go upwards. Wikipedia explains that the bottom right 2x2 pixels determine the encoding mode. Those pixels are

0100 after unmasking which means byte encoding with ASCII16 characters. The next 8 pixels are the size, and

after that we should see the ASCII values for the ”ht~j” characters.

Once I know which pixels need repairing, I can just flip them in the original image. There’s no need to do a

separate mask step. After flipping the 5 broken pixels in the original image, I ended up with a code that

successfully decodes! This means we now have enough correct pixels for the error correction to work. The

contained text is http://tinyurl.com/ihazsolutionzomgzomgz and this URL shows another picture of a woman.

The image’s MD5 hash is: 60e327e0fac73eb6fa291bff84497c2a

11 http://en.wikipedia.org/wiki/QR_code
12 http://en.wikipedia.org/wiki/File:QRCode-2-Structure.png
13 http://www.esponce.com/qr-code-decoding
14 http://research.swtch.com/qart19.png
15 http://en.wikipedia.org/wiki/File:QRCode-3-Layout,Encoding.png
16 http://www.asciitable.com/

Original QR-code

Slightly fixed QR-code

Unmasked QR-code with decoded characters Masking image Fixed QR-code with

pixels flipped
Pixels to repair hilighted with red

http://tinyurl.com/ihazsolutionzomgzomgz
http://en.wikipedia.org/wiki/QR_code
http://en.wikipedia.org/wiki/File:QRCode-2-Structure.png
http://www.esponce.com/qr-code-decoding
http://research.swtch.com/qart19.png
http://en.wikipedia.org/wiki/File:QRCode-3-Layout,Encoding.png
http://www.asciitable.com/

Back from the Klondike

This challenge started with a picture of an old man. I used a similar image search

engine17 on his picture to find that his name is Sam Loyd18 and he was born in

1841. Great!

He is famous for designing puzzles, and he made a

puzzle named ”Back from the Klondike”19 which looks

like puzzle.html on the USB drive.

The puzzle instructions say:

Start from the center. Go three steps in a straight line in

any one of the eight directions, north, south, east, west, northeast, northwest, southeast,

or southwest. When you have gone three steps in a straight line you will reach a square

with a number on it, which indicates the second day's journey, as many steps as it tells, in

a straight line in any one of the eight directions. From this new point, march on again

according to the number indicated, and continue on in this manner until you come upon

a square with a number which will carry you just one step beyond the border, thus solving the puzzle.

Unfortunately, this puzzle’s cell numbers differ from those of the original ”Back from the Klondike”, so I need to

make a puzzle solver. I implement a breadth first search20 in C++, that starts in the center, and jumps the right

number of steps in all eight directions, and continues like this until it reaches a cell one step beyond the border,

while keeping track of the visited path. One thing that greatly speeds up the search is that I don’t need to revisit

cells I’ve already visited.

Within a second, the program solves it and says:
Found solution: NW E SE SW NW N E SE SW NW N

On the USB stick is a vault folder with an index.html that looks like the picture

on the right. It wants you to key in a bunch of directions. When done, press the

lock, and a URL will be visited that is constructed from the directions pressed. I

key in the directions my program told me, and I get the solution picture.

The image’s MD5 hash is: c321553877c582edc9435f97f5bcd7e7

17 http://www.tineye.com/
18 http://en.wikipedia.org/wiki/Sam_Loyd
19 http://en.wikipedia.org/wiki/Back_from_the_Klondike
20 http://en.wikipedia.org/wiki/Breadth-first_search

http://www.tineye.com/
http://en.wikipedia.org/wiki/Sam_Loyd
http://en.wikipedia.org/wiki/Back_from_the_Klondike
http://en.wikipedia.org/wiki/Breadth-first_search

Slow-scan television

The only remaining file now is an mp3 file called file.mp3. Playing it back in a music player reveals nothing,

except that it sounds like a modulated signal.

I open the file with my good old CoolEdit 96 tool21, and display it in the spectrum mode. This image shows the

frequency components of the audio signal. I’m a bit clueless about what modulation this is. It doesn’t sound at all

like the modems used to sound back in the days, so it’s probably not a modem transmission.

I am stuck for quite some time, measure the various tone frequencies by looking at the Y axis, 1900Hz, 1500Hz

and 2300Hz but I don’t recognize the signal. I hear small clicks every 450ms, I find that this is a phase reversal22

used to turn off the echo cancellation23 of analogue networks. So indeed it must be a signal transmitted over

phone lines. The long flat line looks like some kind of sync signal. I search on Google for the string ”1900Hz

modulated signal” and it gives me a good result back on the first page:

Slow-scan television - Wikipedia, the free encyclopedia

 -

This signal can be fed into an SSB transmitter, which in part modulates the ... It consists of a 300-

millisecond leader tone at 1900 Hz, a 10 ms break at 1200 Hz, ...

Wikipedia24 says:

”A calibration header is sent before the image. It consists of a 300-millisecond leader tone at 1900 Hz, a 10 ms break

at 1200 Hz, another 300-millisecond leader tone at 1900 Hz, followed by a digital VIS (vertical interval signaling)

code, identifying the transmission mode used.”

This is exactly what I see. I see a 300ms flat line, then a interruption, and another 300ms flat tone at 1900Hz! The

sound is an image!

Wikipedia links to a software named RX-SSTV25 that can be

used to decode such pictures. I install it, and play the mp3-

file while the software is recording. It slowly reveals a

picture with a URL pointing at an image of the lady!

The image’s MD5 hash is:
4e20c6c8d8b7473a2be84b12ab837bfd

21 http://www.threechords.com/Hammerhead/cool_edit_96.shtml
22 http://tools.ietf.org/html/rfc4734
23 http://en.wikipedia.org/wiki/Echo_canceller
24 http://en.wikipedia.org/wiki/Slow-scan_television
25 http://users.belgacom.net/hamradio/rxsstv.htm

http://en.wikipedia.org/wiki/Slow-scan_television
http://www.threechords.com/Hammerhead/cool_edit_96.shtml
http://tools.ietf.org/html/rfc4734
http://en.wikipedia.org/wiki/Echo_canceller
http://en.wikipedia.org/wiki/Slow-scan_television
http://users.belgacom.net/hamradio/rxsstv.htm

Appendix A – Source code to encryptor key generator
#include <stdio.h>

#include <stdint.h>

#include <string.h>

uint32_t r(uint32_t p){

 return 1664525* p + 1013904223;

}

int decrypt(uint32_t key){

 uint32_t k[2];

 uint32_t i,j,A,B,C,D;

 uint32_t num, some_constant;

 unsigned char ciphertext[8] = {0xe0, 0x9d, 0x3d, 0x1d, 0x81, 0xf4, 0xa5, 0x39};

 unsigned char plaintext[8] = {0};

 C=r((B=r(A = r((j= r(some_constant=r(0x083e5342)), key)))));

 D=r(C);

 memcpy(k, ciphertext, 8);

 i = 31;

 j = some_constant * 32;

 do {

 k[1] -= (k[0] << 4) + C ^ k[0] + j ^ (k[0]>>5) + D;

 k[0] -= (k[1] << 4) + A ^ k[1] + j ^ (k[1]>>5) + B;

 j -= some_constant;

 } while (i--);

 if (memcmp(k, plaintext, 8) == 0) printf("The time(NULL) is %d\n", key);

}

int main(void) {

 int i;

 for(i = 1288103820; i < 1382798220; i++)

 decrypt(i);

 return 0;

}

Appendix B – Source code to decryptor
#include <stdio.h>

#include <stdint.h>

#include <string.h>

uint32_t r(uint32_t p){

 return 1664525* p + 1013904223;

}

void decrypt(uint32_t key){

 uint32_t k[2];

 uint32_t i,j,A,B,C,D;

 uint32_t num, some_constant;

 C=r((B=r(A = r((j= r(some_constant=r(0x083e5342)), key)))));

 D=r(C);

 do{

 k[1] = k[0] = 0;

 num = read(0, k, 8);

 if (num == 0) break;

 i = 31;

 j = some_constant * 32;

 do {

 k[1] -= (k[0] << 4) + C ^ k[0] + j ^ (k[0]>>5) + D;

 k[0] -= (k[1] << 4) + A ^ k[1] + j ^ (k[1]>>5) + B;

 j -= some_constant;

 } while (i--);

 write(1, k, 8);

 } while (num==8);

}

int main(void) {

 decrypt(1351247820);

 return 0;

}

Appendix C – Source code to puzzle solver
#include <stdio.h>

#include <deque>

#include <string>

char *map[] = {

" 2 9 7 ",

" 7 6 1 5 3 5 3 3 5 ",

" 6 8 5 7 7 5 1 5 7 7 8 6 8 ",

" 9 9 4 1 9 7 1 5 2 8 6 5 9 8 8 ",

" 9 6 8 9 1 1 5 1 8 6 6 2 6 1 9 9 2 ",

" 7 3 9 9 1 3 9 7 1 3 3 2 9 9 7 1 7 ",

" 8 7 6 9 2 9 3 7 4 3 1 7 3 9 2 2 8 9 5 ",

" 6 5 7 7 9 1 8 3 1 5 7 1 1 1 2 7 6 9 4 ",

" 6 7 8 2 9 2 4 3 1 6 4 3 1 2 3 5 7 1 4 ",

"5 3 9 5 7 7 3 3 1 3 4 6 1 4 2 2 1 2 4 8 7 ",

"3 4 9 6 2 8 8 5 8 5 7 3 4 1 2 7 1 5 9 8 6 ",

"4 6 5 1 6 3 8 1 1 3 3 4 5 1 3 1 6 6 4 3 9 ",

" 5 8 2 5 6 3 9 9 1 8 4 4 1 3 1 6 1 1 6 ",

" 5 9 7 9 9 1 8 9 2 7 2 2 8 8 8 1 1 5 4 ",

" 2 7 6 9 8 2 8 7 4 6 3 1 5 8 4 2 1 5 4 ",

" 7 9 7 2 4 2 7 7 7 7 1 9 8 2 1 6 3 ",

" 7 5 1 1 9 2 2 6 1 6 2 1 9 7 5 8 7 ",

" 6 9 9 8 1 5 5 1 8 8 9 5 9 7 4 ",

" 2 6 4 5 6 9 6 7 8 1 7 3 6 ",

" 8 1 5 8 4 9 6 9 3 ",

" 9 5 7 ",

};

int Get(int x, int y) {

 return (x < 0 || y < 0 || x >= 22 || y >= 21) ? ' ' : map[y][x*2];

}

struct S {

 int x,y;

 std::string d;

 S(int x, int y, const std::string &d) : x(x), y(y), d(d) {}

};

int dirs[8][2] = {{1,0},{-1,0},{0,1},{0,-1},{1,-1},{1,1},{-1,-1},{-1,1}};

char *dirtxt[] = {" E", " W", " S", " N", " NE", " SE", " NW", " SW"};

bool visited[32][32];

int main(int argc, char* argv[]) {

 std::deque<S> deq;

 deq.push_back(S(10, 10, ""));

 while (!deq.empty()) {

 S s = deq.front();

 deq.pop_front();

 int d = Get(s.x,s.y);

 if (visited[s.y][s.x]) continue;

 d -= '0';

 visited[s.y][s.x] = true;

 for(int i = 0; i < 8; i++) {

 for(int j = 1; j <= d; j++) {

 if (Get(s.x + dirs[i][0] * j, s.y + dirs[i][1] * j) == ' ') {

 if (j == d) printf("Found solution: %s%s\n", s.d.c_str(), dirtxt[i]);

 goto NEXT;

 }

 }

 deq.push_back(S(s.x + dirs[i][0] * d, s.y + dirs[i][1] * d, s.d + dirtxt[i]));

NEXT:;

 }

 }

 return 0;

}

