

T2’ 10 Challenge

Mathieu GASPARD

Prerequisite

What I used to complete the challenge:

• Python 2.5

• Python Crypto (http://www.dlitz.net/software/pycrypto/)

• Wireshark (http://www.wireshark.org/)

• DTK Barcode Reader demo (http://www.dtksoft.com/index.php)

• VirtualBox (http://www.virtualbox.org/)

• IDA disassembler (http://www.hex-rays.com/)

Level 1

The file for level 1 (t210-challenge-level1.pgm) is , as its extension states,
a PGM image file (http://en.wikipedia.org/wiki/Netpbm_format).

A PGM file is actually a text file which can be ope ned with any text
editor and thus easily modified.

Each value in purple represents a single pixel, wit h its value ranging
from 0 to 255

P2 : magic that indicates
a PGM file

2886 7 : Width Height of
the image (7 lines and
2886 columns)

255 : Maximum value of
each pixel (so 0 to 255)

0255 255… : pixels of the
image

First, I believed there was some kind of steganogra phy in the image
(Least Significant Byte method for example, or byte s with a leading 0
in them: 00 and 0255) but those trails ended up bei ng dead ends.

By looking at the image, one can see that it looks like a barcode.

I first thought that barcodes could represent only figures, but they
can also represent text, with the “code 128” for ex ample. (see
http://www.adams1.com/128code.html)

I used “DTK Barcode Reader SDK demo” (see “Prerequi sites”) to decode
the barcode:

The software reveals the challenge URL along with t he type of the
barcode (Code 128).

Let’s verify it manually:

A Code 128 barcode looks like this:

(source http://www.adams1.com/128code.html)

Characters encoding are the following (let’s concen trate on the « h »,
« t » and « p » of « http »)

The letter “h” is encoded as: 1 Black, 2 spaces, 2 Black, 4 spaces, 1
Black and 1 space

(source http://www.adams1.com/128table.html)

When applied to the challenge image, it gives the f ollowing:

Level 2

The file for level 2 is a VirtualBox disk image.

strings t210-level2.vdi |head

<<< Sun VirtualBox Disk Image >>>
sQOtN2
t+a`j
Invalid partition table
Error loading operating system
Missing operating system
MSDOS5.0
NO NAME FAT16 3

One can very easily pass this level with the follow ing command:

strings t210-level2.vdi |grep -i "http"

<</Subtype/Link/Rect[54.45 745.96 370.03 771.4] /B S<</W 0>>/F
4/A<</Type/Action/S/URI/URI(http://t2.fi/ext/challe nge?level=95f05a22b
9694edf20fd5bf5ddcc8e9f) >>>>

But let’s get a little bit deeper.

If one mounts the image in a virtual machine, only 1 file is visible:

t210_level2.txt and it doesn’t contain anything u seful .

A “strings” on the binary shows strings relative to PDF files:

Using a hex editor, one can easily find the PDF fil e (the highlighted
part is some compressed text, I’ll come back to th is later):

And the URL we found before:

The PDF file is split into 2 parts into the image (file was probably
fragmented when written on the FAT partition):

End of part 1 (red line, just before the content of the text file):

Beginning of part 2 (red line)

We can reconstruct the full PDF and open it:

If the PDF could not have been reconstructed or if the URL had not
been in cleartext, the level could still be validat ed by decompressing
a compressed string which contained the URL (the pr inted text
actually).

This compressed string is the one highlighted a few blocks before. It
is manually copied into “/tmp/stream.bin” and then decompressed using
python.

One can clearly see the challenge URL (in red)

Level 3

Once again, this level is about PGM files.

This time, it’s not an obvious barcode, but a class ic image (kudo to
Mario again!)

In the first image (level1), I had already seen “st range bytes” with a
leading 0 (“00” and “0255” instead of plain “0” and “255”).

This time, to make them “visible”, I changed the by tes “00” to “0255”
(actually black pixel to white pixel), and it gives the following:

Wow, again it looks like barcodes!

Let’s remove the text that hinders us: replace “255 ” by “0” (white
pixel to black pixel)

First, I thought it was again a barcode and I tried to assemble the
different columns into a line (in a new PGM file) a nd make it
recognized by the barcode reader software, but I so on discovered that
there was no “quiet zone” and “start zone” in those lines, so it
couldn’t be a barcode.

This time again, I tried to search for steganograph y in the image with
those ”strange” bytes.

With the following python code, I retrieve the data for the 10
“special” columns.(like the one squared in red)

a=open("t210-level3-modified2.pgm","r").read().spli t('\n')
width = int(a[1].split(" ")[0])
height = int(a[1].split(" ")[1])
data = [i for i in "".join(a[3:]).strip().split(' ') if i != ""]
print "w : %d, h : %d"%(width, height)
columns = []
get data per column
for i in range(width):
 columns.append([])
 for j in range(height):
 columns[i].append(data[width*j + i])

keep only 10 columns with "special" bytes (i.e : with "00" or "0255"
in it)
good_columns = [i for i in columns if "00" in i or "0255" in i]

Now I can test if each pixel represents a bit of a character

Good_columns[0] is the column squared in red in the previous
screenshot. “0” will represent a 0 bit, “0255” a 1 bit.

>>> good_columns[0]

['0', '0255', '0', '0', '0', '0255', '0', '0255' , '0', '0255', '0255',

'0', '0', '0255', '0', '0', '0', '0255', '0', '0255 ', '0', '0255',
'0255', '0', '0', '0255', '0255', '0', '0', '0255', '0', '0', '0',
'0255', '0', '0255', '0', '0255', '0', '0', '0', '0 255', '0', '0255',
'0', '0255', '0', '0255', '0', '0255', '0', '0', '0 ', '0', '0', '0',
'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', ' 0', '0', '0', '0',
'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', ' 0', '0', '0', '0',
'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', ' 0', '0', '0', '0',
'0', '0']

>>> chr(int(" 01000101 ",2))

'E'

>>>

Apparently, going with the columns is not the good answer.

Why not try this but with the lines instead (square d in blue), but
with the values of only the “good columns”: There a re 10 good columns
and 100 lines, hence 1000 bytes of data, which can represent 1000 bit.

now get the lines instead of the columns
put all lines in 1 list (1000 elements long, beca use 10 columns of
100 elements each)
lines = []
for j in range(len(good_columns[0])):
 for i in range(len(good_columns)):
 lines.append(good_columns[i][j])

Let’s test now (we test only the first 2 characters):

>>> lines[:16]
['0', '0255', '0255', '0', '0255', '0', '0', '0' , '0', '0255', '0255',
'0255', '0', '0255', '0', '0']
>>> chr(int(" 01101000 ",2))

'h'
>>> chr(int(" 01110100 ",2))

't'
>>>

The hypothesis seems to be confirmed (first 2 chara cters == “ht” as in
“http”). Let’s print the full hidden string:

decode characters (8 bits per char)
char = ""
s = ""
for i in range(len(lines)):
 tmp = int(lines[i])
 if tmp == 255:
 char += "1"
 elif tmp == 0:
 char += "0"
 if len(char) == 8:
 s += chr(int(char,2))
 char = ""

>> s
'http://t2.fi/ext/challenge?level=96ef65c5937b2af4a 2d1fb2dfb1c9f55 \x00

\x00\x00\x00\x00\x00….\x00\x00\x00\x00\x00\x00\x00\ x00\x00\x00\x00\x00
\x00\x00\x00\x00'
>>>

 BINGO !

Level 4

This level is about decrypting a message:

I can't find the good old decryption tool on my new computer! Can you
help, please? I need you to decrypt the below messa ge for me ASAP! I'm
pretty sure I've used the same encryption key (my b irthdate) for the
last five years...

b6 22 4a 16 5e 60 dd 79 0f c5 cd cb 8a fc 48 cd 87 00 61 cb e0 1a e1
e1 dd b8 b5 f8 67 12 d8 7c 25 cd ab f2 f1 2b 83 b0 45 b5 18 c1 45 1b
60 6c ee 1a bc b8 f9 39 c2 fd 3d b0 ff 51 8d 41 6e 01 3e 4c 3d c3 44

34 17 2a

The encrypted message is 72 bytes long. I first tho ught of block
ciphers and ruled out stream ciphers because the en crypted message
probably contains the challenge URL, which is 65 by tes long (without
any trailing character).

Furthermore, it is stated in the mail that the encr yption key is the
user birthdate.

It probably is in the format “MMDDYYYY” (or DDMMYYY Y or YYYYDDMM or
YYYYMMDD) so most probably 8 bytes long (considerin g ASCII encoding,
no UTF-8 encoding).

In this case, AES and 3DES are also ruled out becau se of the size of
the key.

In the obvious ciphers left, DES and Blowfish were the most probable
candidates.

If the birthdate had been encoded in UTF-8, the enc ryption key would
have been 16 bytes long, and AES-128 would have bee n a possible match.

If there had been “garbage” at the end of the encr ypted URL (to pad
it to 72 bytes), a stream cipher would have been po ssible too.

In the bruteforce, I had to test the 4 types of dat e format described
above. (date, date2, date3, date4).

To test if the decryption was successful, I simply searched for “http”
in the decrypted string.

I tested Blowfish first and got lucky quickly:

#!/usr/bin/env python

from Crypto.Cipher import *

enc =
"\xb6\x22\x4a\x16\x5e\x60\xdd\x79\x0f\xc5\xcd\xcb\x 8a\xfc\x48\xcd\x87\x00\x61
\xcb\xe0\x1a\xe1\xe1\xdd\xb8\xb5\xf8\x67\x12\xd8\x7 c\x25\xcd\xab\xf2\xf1\x2b\
x83\xb0\x45\xb5\x18\xc1\x45\x1b\x60\x6c\xee\x1a\xbc \xb8\xf9\x39\xc2\xfd\x3d\x
b0\xff\x51\x8d\x41\x6e\x01\x3e\x4c\x3d\xc3\x44\x34\ x17\x2a"

day = 1
month = 1
year = 1940

for day in range(1,31):
 for month in range(1,12):
 for year in range(1940,1980):
 date = "%02d%02d%s"%(day,month,year)
 date2 = "%02d%02d%s"%(month,day,year)
 date3 = "%s%02d%02d"%(year,day,month)
 date4 = "%s%02d%02d"%(year,month,day)
 for the_date in [date,date2,date3,date4]:
 for mode in [Blowfish.MODE_CBC, Blowfis h.MODE_CFB,
Blowfish.MODE_CTR, Blowfish.MODE_ECB, Blowfish.MODE _OFB, Blowfish.MODE_PGP]:
 a = Blowfish.new(the_date)
 b = a.decrypt(enc)
 if "http" in b:
 print "%s (date : %s)"%(b,the_d ate)

time ./decrypt.py
http://t2.fi/ext/challenge?level=8b57c5946ee283fea0 1e8646e7c1ebf9 (date : 19630115)
http://t2.fi/ext/challenge?level=8b57c5946ee283fea0 1e8646e7c1ebf9 (date : 19630115)
http://t2.fi/ext/challenge?level=8b57c5946ee283fea0 1e8646e7c1ebf9 (date : 19630115)
http://t2.fi/ext/challenge?level=8b57c5946ee283fea0 1e8646e7c1ebf9 (date : 19630115)
http://t2.fi/ext/challenge?level=8b57c5946ee283fea0 1e8646e7c1ebf9 (date : 19630115)
http://t2.fi/ext/challenge?level=8b57c5946ee283fea0 1e8646e7c1ebf9 (date : 19630115)
^CTraceback (most recent call last):
 File "./decrypt.py", line 23, in <module>
 a = Blowfish.new(the_date)
KeyboardInterrupt

real 0m9.118s
user 0m9.113s
sys 0m0.000s

Key found in less than 10 seconds of bruteforce ☺ (The user is born on
15th January 1963)

Level 5

On the last level, a pcap file is provided.

After investigation, it appears that the machine 19 2.168.2.1 used
psexec (http://technet.microsoft.com/en-us/sysinternals/bb8 97553.aspx)
to launch binary “t210test.exe” (located remotely i n \System32\) on
remote machine 192.168.2.10 (which runs Windows Sma ll Business
Server).

Psexec permits the execution of binary remotely (us ing the CLI) and
get the output of the command on the local computer .

To be able to launch the binary on the remote serve r, the binary has
to be copied on it, so it is transferred using SMB.

This is how we will be able to retrieve it:

First, I thought of using a development version of Wireshark (1.5 svn)
which permits the retrieval of files transmitted th rough SMB (see
http://blog.taddong.com/2010/05/capturing-smb-files -with-
wireshark.html) but it didn’t work (Wireshark didn’t see any file
transferred):

I had to revert to a more “manual” method and copy manually the bytes
into a file:

Then “follow TCP stream”, identify the EXE by the P E header (magic MZ).There
are actually 2 binaries in the stream: psexec (1 st) and t210test (2 nd), so
retrieve only the 2 nd one.

Copy the bytes (using “C arrays” in Wireshark) in a text file

And write them in a file (here “/tmp/binary.exe”)

We can now begin analyzing the binary. The interest ing part (the
“_wmain” function) is the following:

2 strings are printed on stdout (using function PRI NT_ON_STDOUT):

• “t2’10 Challenge”

• “THANK YOU MARIO! ….”

Then a thread is created (function CreateThread) an d launches function
StartAddress.

This thread is “killed” after 5 seconds (timeout of
WaitForSingleObject) so better be quick to copy the URL in the
messagebox ;)

The main part of the program is the function StartA ddress which
contains the encrypted URL.
First, the encrypted string is copied into the “Tex t” variable.

Then the string is decrypted (simple XOR encryption with byte 0xA5)
and shown to the user in a MessageBox.

We can finally get the last URL of the challenge by simply running the
binary:

It was really compulsory to retrieve the binary in the pcap capture
because only “stdout” and “stderr” of the binary we re retrieved when
it was launched using “psexec”, and the URL was sto red encrypted.

So only the 2 strings (“t2’10 Challenge”, “THANK YO U MARIO!..”) could
be seen in the network capture:

Conclusion

I'd like to thank the T2 committee for this very fu n challenge with
varying levels which covered different domains (cry ptography,
steanography…)

Please keep making this type of fun challenge in th e coming years :)

